1,459 research outputs found

    Critical Percolation Phase and Thermal BKT Transition in a Scale-Free Network with Short-Range and Long-Range Random Bonds

    Get PDF
    Percolation in a scale-free hierarchical network is solved exactly by renormalization-group theory, in terms of the different probabilities of short-range and long-range bonds. A phase of critical percolation, with algebraic (Berezinskii-Kosterlitz-Thouless) geometric order, occurs in the phase diagram, in addition to the ordinary (compact) percolating phase and the non-percolating phase. It is found that no connection exists between, on the one hand, the onset of this geometric BKT behavior and, on the other hand, the onsets of the highly clustered small-world character of the network and of the thermal BKT transition of the Ising model on this network. Nevertheless, both geometric and thermal BKT behaviors have inverted characters, occurring where disorder is expected, namely at low bond probability and high temperature, respectively. This may be a general property of long-range networks.Comment: Added explanations and data. Published version. 4pages, 4 figure

    An Attempt to Probe the Radio Jet Collimation Regions in NGC 4278, NGC 4374 (M84), and NGC 6166

    Full text link
    NRAO Very Long Baseline Array (VLBA) observations of NGC 4278, NGC 4374 (M84), NGC 6166, and M87 (NGC 4486) have been made at 43 GHz in an effort to image the jet collimation region. This is the first attempt to image the first three sources at 43 GHz using Very Long Baseline Interferometry (VLBI) techniques. These three sources were chosen because their estimated black hole mass and distance implied a Schwarzschild radius with large angular size, giving hope that the jet collimation regions could be studied. Phase referencing was utilize for the three sources because of their expected low flux densities. M87 was chosen as the calibrator for NGC 4374 because it satisfied the phase referencing requirements: nearby to the source and sufficiently strong. Having observed M87 for a long integration time, we have detected its sub-parsec jet, allowing us to confirm previous high resolution observations made by Junor, Biretta & Livio, who have indicated that a wide opening angle was seen near the base of the jet. Phase referencing successfully improved our image sensitivity, yielding detections and providing accurate positions for NGC 4278, NGC 4374 and NGC 6166. These sources are point dominated, but show suggestions of extended structure in the direction of the large-scale jets. However, higher sensitivity will be required to study their sub-parsec jet structure

    X-ray Properties of Radio-Selected Dual Active Galactic Nuclei

    Get PDF
    Merger simulations predict that tidally induced gas inflows can trigger kpc-scale dual active galactic nuclei (dAGN) in heavily obscured environments. Previously with the Very Large Array, we have confirmed four dAGN with redshifts between 0.04<z<0.220.04 < z < 0.22 and projected separations between 4.3 and 9.2 kpc in the SDSS Stripe 82 field. Here, we present ChandraChandra X-ray observations that spatially resolve these dAGN and compare their multi-wavelength properties to those of single AGN from the literature. We detect X-ray emission from six of the individual merger components and obtain upper limits for the remaining two. Combined with previous radio and optical observations, we find that our dAGN have properties similar to nearby low-luminosity AGN, and they agree well with the black hole fundamental plane relation. There are three AGN-dominated X-ray sources, whose X-ray hardness-ratio derived column densities show that two are unobscured and one is obscured. The low obscured fraction suggests these dAGN are no more obscured than single AGN, in contrast to the predictions from simulations. These three sources show an apparent X-ray deficit compared to their mid-infrared continuum and optical [OIII] line luminosities, suggesting higher levels of obscuration, in tension with the hardness-ratio derived column densities. Enhanced mid-infrared and [OIII] luminosities from star formation may explain this deficit. There is ambiguity in the level of obscuration for the remaining five components since their hardness ratios may be affected by non-nuclear X-ray emissions, or are undetected altogether. They require further observations to be fully characterized.Comment: 11 pages, 5 figures, Accepted for publication in the Astrophysical Journa
    corecore